A Structured Dictionary Learning Method for Multi-scale Sparse Representation
نویسندگان
چکیده
In this paper, we address the problem of learning multi-scale sparse representations of natural images using structured dictionaries. Dictionaries learned by traditional algorithms have two major limitations: lack of structure and fixed size. These methods treat atoms independently from each other, and do not exploit possible relationships between them. Fixed size of atoms restricts the flexibility of representing natural images, which usually consist of complicated structure and texture. We put forward a novel approach to learn a dictionary by performing structured sparse coding under a multi-scale binary tree model of patches. Atoms of different sizes are laid out in a grouped or hierarchical fashion, which can be fully exploited by structured sparsity regularization techniques. Experiments show that both quantitative and qualitative improvements are achieved for restoration tasks. It is worth noting that our approach can be easily integrated into existing sparse representation-based applications in image processing.
منابع مشابه
Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملاستفاده از نمایش پراکنده و همکاری دوربینها برای کاربردهای نظارت بینایی
With the growth of demand for security and safety, video-based surveillance systems have been employed in a large number of rural and urban areas. The problem of such systems lies in the detection of patterns of behaviors in a dataset that do not conform to normal behaviors. Recently, for behavior classification and abnormal behavior detection, the sparse representation approach is used. In thi...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کامل